Miniature JPL Universal Instrument Bus (UNIIBUS)

NASA

Completed Technology Project (2013 - 2017)

Project Introduction


Develop a Universal Digital Processor Bus architecture using state of the art commercial packaging technologies.

This work will transition commercial advanced- yet mature- packaging approaches, such as surface mount and system-in-package, into mainstream use at JPL. Starting with an existing Digital Processor Unit (DPU) board that is planned to be used on multiple spacecraft in the next decade, we will apply modern commercial electronics packaging solutions to create a miniature version of the DPU. The DPU has multi I/O communication options (Spacewire, LVDS, 1553, TTE) and will target a 1U board form factor, down from existing 6U layout. Use performance COTS based devices to provide power and size reduction while maintaining performance and universal adaptability. The DPU hardware will be used to demonstrate in-house manufacturability, cost effectiveness, functionality, performance, and reliability of state of the art electronics manufacturing and assembly for future-focused NASA missions. The implementation of newer packaging technologies will result in large decreases in mass, volume, and power of electronic subsystems.

Anticipated Benefits

Can shrink digital command board size by >40%. Improved signal and power efficiency has a positive effect on the entire flight system through reductions in IO count, cost, mass and volume. Improvement in manufacturing costs and increased reliability. Ready availability of components with shorter lead time and lower cost.

Primary U.S. Work Locations and Key Partners

Miniature JPL Universal Instrument Bus

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Organizational Responsibility	1
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	2

Organizational Responsibility

Responsible Mission Directorate:

Mission Support Directorate (MSD)

Lead Center / Facility:

Jet Propulsion Laboratory (JPL)

Responsible Program:

Center Independent Research & Development: JPL IRAD

Miniature JPL Universal Instrument Bus (UNIIBUS)

Completed Technology Project (2013 - 2017)

Organizations Performing Work	Role	Туре	Location
	Lead	NASA	Pasadena,
	Organization	Center	California

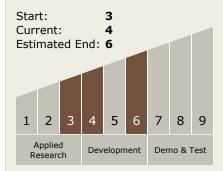
Primary	ı U	S.	Wor	rk I	Loca	tio	ns
I I IIII ai y	, ,		***		LUCU		щ

California

Project Management

Program Manager:

Fred Y Hadaegh


Project Manager:

Jonas Zmuidzinas

Principal Investigator:

Don J Hunter

Technology Maturity (TRL)

Technology Areas

Primary:

- TX02 Flight Computing and Avionics
 - □ TX02.1 Avionics
 Component Technologies
 □ TX02.1.2 Electronic
 Packaging and
 Implementations

